Замена y = ctg 4x, dy = 4dx/sin^2 4x; dx/sin^2 x = dy/4
[m]\large \int \frac{\sqrt[7]{2 - y}}{4} dy = \frac{1}{4} \int (2 - y)^{1/7} dy = \frac{1}{4} \cdot (-\frac{(2-y)^{8/7}}{8/7}) +C= [/m]
[m]= -\frac{7}{4 \cdot 8} (2-y)^{8/7}+C = -\frac{7}{32} (2 - ctg\ 4x)^{8/7} + C[/m]
2) [m]\large \int (5x+1) \cos 4x dx = 5 \int x \cos 4x dx + \int \cos 4x dx[/m]
1 интеграл берется по частям:
u = x; dv = cos 4x dx; du = dx; v = 1/4*sin 4x
2 интеграл табличный:
[m]\large \int (5x+1) \cos 4x dx = 5 \int x \cos 4x dx + \int \cos 4x dx =[/m]
[m]\large = \frac{x}{4} \sin 4x - \frac{1}{4} \int \sin 4x dx + \frac{1}{4} \sin 4x =[/m]
[m]\large \frac{x}{4} \sin 4x + \frac{1}{16} \cos 4x + \frac{1}{4} \sin 4x + C[/m]
3) [m]\large \int \frac{1}{\sqrt{3x-1}(9 - \sqrt[4]{3x-1})} dx[/m]
Замена [m]y = \sqrt[4]{3x-1};\ \ \sqrt{3x-1} = y^2;[/m]
Тогда [m]3x - 1 = y^4;\ \ x = \frac{y^4 + 1}{3};\ \ dx = \frac{4y^3}{3} dy[/m]
[m]\large \int \frac{1}{\sqrt{3x-1}(9 - \sqrt[4]{3x-1})} dx = \int \frac{1}{y^2(9 - y)} \cdot \frac{4y^3}{3} dy = \frac{4}{3} \int \frac{y}{9-y} dy[/m]
Раскладываем эту дробь на сумму дробей:
[m]\large \frac{y}{9-y} = -\frac{y}{y-9} = -\frac{y-9+9}{y-9} = -(\frac{y-9}{y-9} + \frac{9}{y-9})= -1 - \frac{9}{y-9}[/m]
Получаем интеграл:
[m]\large \frac{4}{3} \int (-1 - \frac{9}{y-9}) dy = \frac{4}{3} \cdot (-y - 9\ln|y-9|) +C =[/m]
[m]\large = -\frac{4}{3} \cdot (\sqrt[4]{3x-1} + 9\ln|\sqrt[4]{3x-1} - 9|) +C[/m]